
NCPC 2021

Presentation of solutions

2021-10-09

NCPC 2021 solutions

Problems prepared by

Per Austrin (KTH Royal Institute of Technology)

Andreas Björklund (Apptus)

Pål Grønås Drange (University of Bergen)

Nils Gustafsson (KTH Royal Institute of Technology)

Antti Laaksonen (CSES)

Jimmy Mårdell (Spotify)

Bergur Snorrason (University of Iceland)

NCPC 2021 solutions

K � Knot Knowledge

Problem

You are given a list of numbers and then another list of the same numbers, except one
number has been removed. What number was removed?

Solution

1 This problem can be solved in many ways, the list is small so there is no need for
any special data structure or algorithm.

2 But for this problem, the most e�cient solution is also the simplest:

3 Let the �rst list of numbers be x1, x2, . . . xn and the second list be y1, y2 . . . yn−1.

4 The answer is then
n∑

k=1

xk −
n−1∑
k=1

yk .

Statistics at 4-hour mark: 248 submissions, 196 accepted, �rst after 00:01

Author: Bergur Snorrason NCPC 2021 solutions

K � Knot Knowledge

Problem

You are given a list of numbers and then another list of the same numbers, except one
number has been removed. What number was removed?

Solution

1 This problem can be solved in many ways, the list is small so there is no need for
any special data structure or algorithm.

2 But for this problem, the most e�cient solution is also the simplest:

3 Let the �rst list of numbers be x1, x2, . . . xn and the second list be y1, y2 . . . yn−1.

4 The answer is then
n∑

k=1

xk −
n−1∑
k=1

yk .

Statistics at 4-hour mark: 248 submissions, 196 accepted, �rst after 00:01

Author: Bergur Snorrason NCPC 2021 solutions

K � Knot Knowledge

Problem

You are given a list of numbers and then another list of the same numbers, except one
number has been removed. What number was removed?

Solution

1 This problem can be solved in many ways, the list is small so there is no need for
any special data structure or algorithm.

2 But for this problem, the most e�cient solution is also the simplest:

3 Let the �rst list of numbers be x1, x2, . . . xn and the second list be y1, y2 . . . yn−1.

4 The answer is then
n∑

k=1

xk −
n−1∑
k=1

yk .

Statistics at 4-hour mark: 248 submissions, 196 accepted, �rst after 00:01

Author: Bergur Snorrason NCPC 2021 solutions

K � Knot Knowledge

Problem

You are given a list of numbers and then another list of the same numbers, except one
number has been removed. What number was removed?

Solution

1 This problem can be solved in many ways, the list is small so there is no need for
any special data structure or algorithm.

2 But for this problem, the most e�cient solution is also the simplest:

3 Let the �rst list of numbers be x1, x2, . . . xn and the second list be y1, y2 . . . yn−1.

4 The answer is then
n∑

k=1

xk −
n−1∑
k=1

yk .

Statistics at 4-hour mark: 248 submissions, 196 accepted, �rst after 00:01

Author: Bergur Snorrason NCPC 2021 solutions

K � Knot Knowledge

Problem

You are given a list of numbers and then another list of the same numbers, except one
number has been removed. What number was removed?

Solution

1 This problem can be solved in many ways, the list is small so there is no need for
any special data structure or algorithm.

2 But for this problem, the most e�cient solution is also the simplest:

3 Let the �rst list of numbers be x1, x2, . . . xn and the second list be y1, y2 . . . yn−1.

4 The answer is then
n∑

k=1

xk −
n−1∑
k=1

yk .

Statistics at 4-hour mark: 248 submissions, 196 accepted, �rst after 00:01

Author: Bergur Snorrason NCPC 2021 solutions

K � Knot Knowledge

Problem

You are given a list of numbers and then another list of the same numbers, except one
number has been removed. What number was removed?

Solution

1 This problem can be solved in many ways, the list is small so there is no need for
any special data structure or algorithm.

2 But for this problem, the most e�cient solution is also the simplest:

3 Let the �rst list of numbers be x1, x2, . . . xn and the second list be y1, y2 . . . yn−1.

4 The answer is then
n∑

k=1

xk −
n−1∑
k=1

yk .

Statistics at 4-hour mark: 248 submissions, 196 accepted, �rst after 00:01
Author: Bergur Snorrason NCPC 2021 solutions

J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions

J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions

J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions

J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions

J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions

J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions

J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions

L � Locust Locus

Problem

A pair of cicada species appear every a and b years, and was last observed in year y .
Find the next year they will appear together again.

Statistics at 4-hour mark: 374 submissions, 185 accepted, �rst after 00:02

Author: Pål Grønås Drange NCPC 2021 solutions

L � Locust Locus

Problem

A pair of cicada species appear every a and b years, and was last observed in year y .
Find the next year they will appear together again.

Solution 1

1 For each year z = y + 1, y + 2, y + 3, . . .:

Check if z − y is divisible by both a and b.
Break when �rst such z is found.

2 Goes on for at most a · b steps because a · b de�nitely divides both a and b.

3 So this takes O(a · b) time which is fast enough because a and b are very small.

Statistics at 4-hour mark: 374 submissions, 185 accepted, �rst after 00:02

Author: Pål Grønås Drange NCPC 2021 solutions

L � Locust Locus

Problem

A pair of cicada species appear every a and b years, and was last observed in year y .
Find the next year they will appear together again.

Solution 1

1 For each year z = y + 1, y + 2, y + 3, . . .:

Check if z − y is divisible by both a and b.
Break when �rst such z is found.

2 Goes on for at most a · b steps because a · b de�nitely divides both a and b.

3 So this takes O(a · b) time which is fast enough because a and b are very small.

Statistics at 4-hour mark: 374 submissions, 185 accepted, �rst after 00:02

Author: Pål Grønås Drange NCPC 2021 solutions

L � Locust Locus

Problem

A pair of cicada species appear every a and b years, and was last observed in year y .
Find the next year they will appear together again.

Solution 1

1 For each year z = y + 1, y + 2, y + 3, . . .:

Check if z − y is divisible by both a and b.
Break when �rst such z is found.

2 Goes on for at most a · b steps because a · b de�nitely divides both a and b.

3 So this takes O(a · b) time which is fast enough because a and b are very small.

Statistics at 4-hour mark: 374 submissions, 185 accepted, �rst after 00:02

Author: Pål Grønås Drange NCPC 2021 solutions

L � Locust Locus

Problem

A pair of cicada species appear every a and b years, and was last observed in year y .
Find the next year they will appear together again.

Solution 2

1 The joint period of the two species is the least common multiple of a and b.

2 Answer is y + lcm(a, b).

3 Takes O(log(a · b)) time to compute.

Statistics at 4-hour mark: 374 submissions, 185 accepted, �rst after 00:02

Author: Pål Grønås Drange NCPC 2021 solutions

https://en.wikipedia.org/wiki/Least_common_multiple

L � Locust Locus

Problem

A pair of cicada species appear every a and b years, and was last observed in year y .
Find the next year they will appear together again.

Solution 2

1 The joint period of the two species is the least common multiple of a and b.

2 Answer is y + lcm(a, b).

3 Takes O(log(a · b)) time to compute.

Statistics at 4-hour mark: 374 submissions, 185 accepted, �rst after 00:02

Author: Pål Grønås Drange NCPC 2021 solutions

https://en.wikipedia.org/wiki/Least_common_multiple

L � Locust Locus

Problem

A pair of cicada species appear every a and b years, and was last observed in year y .
Find the next year they will appear together again.

Solution 2

1 The joint period of the two species is the least common multiple of a and b.

2 Answer is y + lcm(a, b).

3 Takes O(log(a · b)) time to compute.

Statistics at 4-hour mark: 374 submissions, 185 accepted, �rst after 00:02

Author: Pål Grønås Drange NCPC 2021 solutions

https://en.wikipedia.org/wiki/Least_common_multiple

L � Locust Locus

Problem

A pair of cicada species appear every a and b years, and was last observed in year y .
Find the next year they will appear together again.

Solution 2

1 The joint period of the two species is the least common multiple of a and b.

2 Answer is y + lcm(a, b).

3 Takes O(log(a · b)) time to compute.

Statistics at 4-hour mark: 374 submissions, 185 accepted, �rst after 00:02

Author: Pål Grønås Drange NCPC 2021 solutions

https://en.wikipedia.org/wiki/Least_common_multiple

G � Grazed Grains

Problem

Given n ≤ 10 circles of radius ≤ 10 and with centers in [0, 10]× [0, 10], approximate
the area of their union, up to a factor 1± 0.1.

Solutiom

1 Can compute the area with high precision using numeric integration.
Not too hard, but a bit of code, and there is a simpler solution: use sampling.

2 Sample r uniformly random points in [−10, 20]× [−10, 20].
(this box chosen so that all the circles are contained in it)

3 If x of the r points are inside some circle, we estimate the area as x
r · 30

2.

4 Analysis (not needed to solve the problem): can prove that you expect a relative
error around 24/

√
r . If r > 100k this starts becoming small enough, and with

r = 1 million the sampling error is very unlikely to be too large.

Statistics at 4-hour mark: 267 submissions, 117 accepted, �rst after 00:07

Author: Nils Gustafsson NCPC 2021 solutions

G � Grazed Grains

Problem

Given n ≤ 10 circles of radius ≤ 10 and with centers in [0, 10]× [0, 10], approximate
the area of their union, up to a factor 1± 0.1.

Solutiom

1 Can compute the area with high precision using numeric integration.
Not too hard, but a bit of code, and there is a simpler solution: use sampling.

2 Sample r uniformly random points in [−10, 20]× [−10, 20].
(this box chosen so that all the circles are contained in it)

3 If x of the r points are inside some circle, we estimate the area as x
r · 30

2.

4 Analysis (not needed to solve the problem): can prove that you expect a relative
error around 24/

√
r . If r > 100k this starts becoming small enough, and with

r = 1 million the sampling error is very unlikely to be too large.

Statistics at 4-hour mark: 267 submissions, 117 accepted, �rst after 00:07

Author: Nils Gustafsson NCPC 2021 solutions

G � Grazed Grains

Problem

Given n ≤ 10 circles of radius ≤ 10 and with centers in [0, 10]× [0, 10], approximate
the area of their union, up to a factor 1± 0.1.

Solutiom

1 Can compute the area with high precision using numeric integration.
Not too hard, but a bit of code, and there is a simpler solution: use sampling.

2 Sample r uniformly random points in [−10, 20]× [−10, 20].
(this box chosen so that all the circles are contained in it)

3 If x of the r points are inside some circle, we estimate the area as x
r · 30

2.

4 Analysis (not needed to solve the problem): can prove that you expect a relative
error around 24/

√
r . If r > 100k this starts becoming small enough, and with

r = 1 million the sampling error is very unlikely to be too large.

Statistics at 4-hour mark: 267 submissions, 117 accepted, �rst after 00:07

Author: Nils Gustafsson NCPC 2021 solutions

G � Grazed Grains

Problem

Given n ≤ 10 circles of radius ≤ 10 and with centers in [0, 10]× [0, 10], approximate
the area of their union, up to a factor 1± 0.1.

Solutiom

1 Can compute the area with high precision using numeric integration.
Not too hard, but a bit of code, and there is a simpler solution: use sampling.

2 Sample r uniformly random points in [−10, 20]× [−10, 20].
(this box chosen so that all the circles are contained in it)

3 If x of the r points are inside some circle, we estimate the area as x
r · 30

2.

4 Analysis (not needed to solve the problem): can prove that you expect a relative
error around 24/

√
r . If r > 100k this starts becoming small enough, and with

r = 1 million the sampling error is very unlikely to be too large.

Statistics at 4-hour mark: 267 submissions, 117 accepted, �rst after 00:07

Author: Nils Gustafsson NCPC 2021 solutions

G � Grazed Grains

Problem

Given n ≤ 10 circles of radius ≤ 10 and with centers in [0, 10]× [0, 10], approximate
the area of their union, up to a factor 1± 0.1.

Solutiom

1 Can compute the area with high precision using numeric integration.
Not too hard, but a bit of code, and there is a simpler solution: use sampling.

2 Sample r uniformly random points in [−10, 20]× [−10, 20].
(this box chosen so that all the circles are contained in it)

3 If x of the r points are inside some circle, we estimate the area as x
r · 30

2.

4 Analysis (not needed to solve the problem): can prove that you expect a relative
error around 24/

√
r . If r > 100k this starts becoming small enough, and with

r = 1 million the sampling error is very unlikely to be too large.

Statistics at 4-hour mark: 267 submissions, 117 accepted, �rst after 00:07

Author: Nils Gustafsson NCPC 2021 solutions

G � Grazed Grains

Problem

Given n ≤ 10 circles of radius ≤ 10 and with centers in [0, 10]× [0, 10], approximate
the area of their union, up to a factor 1± 0.1.

Solutiom

1 Can compute the area with high precision using numeric integration.
Not too hard, but a bit of code, and there is a simpler solution: use sampling.

2 Sample r uniformly random points in [−10, 20]× [−10, 20].
(this box chosen so that all the circles are contained in it)

3 If x of the r points are inside some circle, we estimate the area as x
r · 30

2.

4 Analysis (not needed to solve the problem): can prove that you expect a relative
error around 24/

√
r . If r > 100k this starts becoming small enough, and with

r = 1 million the sampling error is very unlikely to be too large.

Statistics at 4-hour mark: 267 submissions, 117 accepted, �rst after 00:07
Author: Nils Gustafsson NCPC 2021 solutions

A � Antenna Analysis

Problem

Given integers x1, . . . , xn, �nd, for each i , the maximum of |xi − xj | − c |i − j | over j ≤ i .

Solution

1 Key observation: dropping the absolute values does not increase the answer.

2 Simplify problem: drop the absolute values and maximize
(xi − xj)− c(i − j) = (xi − c · i) + (−xj + c · j).

Keep track of largest value y of −xj + c · j seen so far.
Answer to simpli�ed problem is xi − c · i + y .

3 To solve original problem, separately solve variant for (xj − xi)− c(i − j) the same
way and take largest of the two.

4 Time complexity O(n).

5 More complicated solutions using balanced search trees or range trees also possible.

Statistics at 4-hour mark: 626 submissions, 88 accepted, �rst after 00:04

Author: Antti Laaksonen NCPC 2021 solutions

A � Antenna Analysis

Problem

Given integers x1, . . . , xn, �nd, for each i , the maximum of |xi − xj | − c |i − j | over j ≤ i .

Solution

1 Key observation: dropping the absolute values does not increase the answer.

2 Simplify problem: drop the absolute values and maximize
(xi − xj)− c(i − j) = (xi − c · i) + (−xj + c · j).

Keep track of largest value y of −xj + c · j seen so far.
Answer to simpli�ed problem is xi − c · i + y .

3 To solve original problem, separately solve variant for (xj − xi)− c(i − j) the same
way and take largest of the two.

4 Time complexity O(n).

5 More complicated solutions using balanced search trees or range trees also possible.

Statistics at 4-hour mark: 626 submissions, 88 accepted, �rst after 00:04

Author: Antti Laaksonen NCPC 2021 solutions

A � Antenna Analysis

Problem

Given integers x1, . . . , xn, �nd, for each i , the maximum of |xi − xj | − c |i − j | over j ≤ i .

Solution

1 Key observation: dropping the absolute values does not increase the answer.

2 Simplify problem: drop the absolute values and maximize
(xi − xj)− c(i − j) = (xi − c · i) + (−xj + c · j).

Keep track of largest value y of −xj + c · j seen so far.
Answer to simpli�ed problem is xi − c · i + y .

3 To solve original problem, separately solve variant for (xj − xi)− c(i − j) the same
way and take largest of the two.

4 Time complexity O(n).

5 More complicated solutions using balanced search trees or range trees also possible.

Statistics at 4-hour mark: 626 submissions, 88 accepted, �rst after 00:04

Author: Antti Laaksonen NCPC 2021 solutions

A � Antenna Analysis

Problem

Given integers x1, . . . , xn, �nd, for each i , the maximum of |xi − xj | − c |i − j | over j ≤ i .

Solution

1 Key observation: dropping the absolute values does not increase the answer.

2 Simplify problem: drop the absolute values and maximize
(xi − xj)− c(i − j) = (xi − c · i) + (−xj + c · j).

Keep track of largest value y of −xj + c · j seen so far.

Answer to simpli�ed problem is xi − c · i + y .

3 To solve original problem, separately solve variant for (xj − xi)− c(i − j) the same
way and take largest of the two.

4 Time complexity O(n).

5 More complicated solutions using balanced search trees or range trees also possible.

Statistics at 4-hour mark: 626 submissions, 88 accepted, �rst after 00:04

Author: Antti Laaksonen NCPC 2021 solutions

A � Antenna Analysis

Problem

Given integers x1, . . . , xn, �nd, for each i , the maximum of |xi − xj | − c |i − j | over j ≤ i .

Solution

1 Key observation: dropping the absolute values does not increase the answer.

2 Simplify problem: drop the absolute values and maximize
(xi − xj)− c(i − j) = (xi − c · i) + (−xj + c · j).

Keep track of largest value y of −xj + c · j seen so far.
Answer to simpli�ed problem is xi − c · i + y .

3 To solve original problem, separately solve variant for (xj − xi)− c(i − j) the same
way and take largest of the two.

4 Time complexity O(n).

5 More complicated solutions using balanced search trees or range trees also possible.

Statistics at 4-hour mark: 626 submissions, 88 accepted, �rst after 00:04

Author: Antti Laaksonen NCPC 2021 solutions

A � Antenna Analysis

Problem

Given integers x1, . . . , xn, �nd, for each i , the maximum of |xi − xj | − c |i − j | over j ≤ i .

Solution

1 Key observation: dropping the absolute values does not increase the answer.

2 Simplify problem: drop the absolute values and maximize
(xi − xj)− c(i − j) = (xi − c · i) + (−xj + c · j).

Keep track of largest value y of −xj + c · j seen so far.
Answer to simpli�ed problem is xi − c · i + y .

3 To solve original problem, separately solve variant for (xj − xi)− c(i − j) the same
way and take largest of the two.

4 Time complexity O(n).

5 More complicated solutions using balanced search trees or range trees also possible.

Statistics at 4-hour mark: 626 submissions, 88 accepted, �rst after 00:04

Author: Antti Laaksonen NCPC 2021 solutions

A � Antenna Analysis

Problem

Given integers x1, . . . , xn, �nd, for each i , the maximum of |xi − xj | − c |i − j | over j ≤ i .

Solution

1 Key observation: dropping the absolute values does not increase the answer.

2 Simplify problem: drop the absolute values and maximize
(xi − xj)− c(i − j) = (xi − c · i) + (−xj + c · j).

Keep track of largest value y of −xj + c · j seen so far.
Answer to simpli�ed problem is xi − c · i + y .

3 To solve original problem, separately solve variant for (xj − xi)− c(i − j) the same
way and take largest of the two.

4 Time complexity O(n).

5 More complicated solutions using balanced search trees or range trees also possible.

Statistics at 4-hour mark: 626 submissions, 88 accepted, �rst after 00:04

Author: Antti Laaksonen NCPC 2021 solutions

A � Antenna Analysis

Problem

Given integers x1, . . . , xn, �nd, for each i , the maximum of |xi − xj | − c |i − j | over j ≤ i .

Solution

1 Key observation: dropping the absolute values does not increase the answer.

2 Simplify problem: drop the absolute values and maximize
(xi − xj)− c(i − j) = (xi − c · i) + (−xj + c · j).

Keep track of largest value y of −xj + c · j seen so far.
Answer to simpli�ed problem is xi − c · i + y .

3 To solve original problem, separately solve variant for (xj − xi)− c(i − j) the same
way and take largest of the two.

4 Time complexity O(n).

5 More complicated solutions using balanced search trees or range trees also possible.

Statistics at 4-hour mark: 626 submissions, 88 accepted, �rst after 00:04

Author: Antti Laaksonen NCPC 2021 solutions

A � Antenna Analysis

Problem

Given integers x1, . . . , xn, �nd, for each i , the maximum of |xi − xj | − c |i − j | over j ≤ i .

Solution

1 Key observation: dropping the absolute values does not increase the answer.

2 Simplify problem: drop the absolute values and maximize
(xi − xj)− c(i − j) = (xi − c · i) + (−xj + c · j).

Keep track of largest value y of −xj + c · j seen so far.
Answer to simpli�ed problem is xi − c · i + y .

3 To solve original problem, separately solve variant for (xj − xi)− c(i − j) the same
way and take largest of the two.

4 Time complexity O(n).

5 More complicated solutions using balanced search trees or range trees also possible.

Statistics at 4-hour mark: 626 submissions, 88 accepted, �rst after 00:04
Author: Antti Laaksonen NCPC 2021 solutions

D � Deceptive Directions

Problem

Get w × h grid map and a shortest sequence of NWSE steps to reach some treasure.
But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

1 Compute distance d [p] from start to every position p in the maze using BFS.
2 Forbid all steps that could not have been used by the correct instruction sequence:

Forbid step p → q if not used in any shortest path (i.e., if d [q] 6= d [p] + 1).
Forbid step p → q if going from p to q means taking the same step as the d [q]'th
step in the corrupted instruction sequence.

3 Run BFS again with these steps forbidden.

All reached positions at same distance as instruction length are possible treasure
locations.

4 Time complexity: O(w · h).

Statistics at 4-hour mark: 325 submissions, 55 accepted, �rst after 00:38

Author: Per Austrin NCPC 2021 solutions

D � Deceptive Directions

Problem

Get w × h grid map and a shortest sequence of NWSE steps to reach some treasure.
But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

1 Compute distance d [p] from start to every position p in the maze using BFS.

2 Forbid all steps that could not have been used by the correct instruction sequence:

Forbid step p → q if not used in any shortest path (i.e., if d [q] 6= d [p] + 1).
Forbid step p → q if going from p to q means taking the same step as the d [q]'th
step in the corrupted instruction sequence.

3 Run BFS again with these steps forbidden.

All reached positions at same distance as instruction length are possible treasure
locations.

4 Time complexity: O(w · h).

Statistics at 4-hour mark: 325 submissions, 55 accepted, �rst after 00:38

Author: Per Austrin NCPC 2021 solutions

D � Deceptive Directions

Problem

Get w × h grid map and a shortest sequence of NWSE steps to reach some treasure.
But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

1 Compute distance d [p] from start to every position p in the maze using BFS.
2 Forbid all steps that could not have been used by the correct instruction sequence:

Forbid step p → q if not used in any shortest path (i.e., if d [q] 6= d [p] + 1).
Forbid step p → q if going from p to q means taking the same step as the d [q]'th
step in the corrupted instruction sequence.

3 Run BFS again with these steps forbidden.

All reached positions at same distance as instruction length are possible treasure
locations.

4 Time complexity: O(w · h).

Statistics at 4-hour mark: 325 submissions, 55 accepted, �rst after 00:38

Author: Per Austrin NCPC 2021 solutions

D � Deceptive Directions

Problem

Get w × h grid map and a shortest sequence of NWSE steps to reach some treasure.
But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

1 Compute distance d [p] from start to every position p in the maze using BFS.
2 Forbid all steps that could not have been used by the correct instruction sequence:

Forbid step p → q if not used in any shortest path (i.e., if d [q] 6= d [p] + 1).

Forbid step p → q if going from p to q means taking the same step as the d [q]'th
step in the corrupted instruction sequence.

3 Run BFS again with these steps forbidden.

All reached positions at same distance as instruction length are possible treasure
locations.

4 Time complexity: O(w · h).

Statistics at 4-hour mark: 325 submissions, 55 accepted, �rst after 00:38

Author: Per Austrin NCPC 2021 solutions

D � Deceptive Directions

Problem

Get w × h grid map and a shortest sequence of NWSE steps to reach some treasure.
But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

1 Compute distance d [p] from start to every position p in the maze using BFS.
2 Forbid all steps that could not have been used by the correct instruction sequence:

Forbid step p → q if not used in any shortest path (i.e., if d [q] 6= d [p] + 1).
Forbid step p → q if going from p to q means taking the same step as the d [q]'th
step in the corrupted instruction sequence.

3 Run BFS again with these steps forbidden.

All reached positions at same distance as instruction length are possible treasure
locations.

4 Time complexity: O(w · h).

Statistics at 4-hour mark: 325 submissions, 55 accepted, �rst after 00:38

Author: Per Austrin NCPC 2021 solutions

D � Deceptive Directions

Problem

Get w × h grid map and a shortest sequence of NWSE steps to reach some treasure.
But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

1 Compute distance d [p] from start to every position p in the maze using BFS.
2 Forbid all steps that could not have been used by the correct instruction sequence:

Forbid step p → q if not used in any shortest path (i.e., if d [q] 6= d [p] + 1).
Forbid step p → q if going from p to q means taking the same step as the d [q]'th
step in the corrupted instruction sequence.

3 Run BFS again with these steps forbidden.

All reached positions at same distance as instruction length are possible treasure
locations.

4 Time complexity: O(w · h).

Statistics at 4-hour mark: 325 submissions, 55 accepted, �rst after 00:38

Author: Per Austrin NCPC 2021 solutions

D � Deceptive Directions

Problem

Get w × h grid map and a shortest sequence of NWSE steps to reach some treasure.
But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

1 Compute distance d [p] from start to every position p in the maze using BFS.
2 Forbid all steps that could not have been used by the correct instruction sequence:

Forbid step p → q if not used in any shortest path (i.e., if d [q] 6= d [p] + 1).
Forbid step p → q if going from p to q means taking the same step as the d [q]'th
step in the corrupted instruction sequence.

3 Run BFS again with these steps forbidden.

All reached positions at same distance as instruction length are possible treasure
locations.

4 Time complexity: O(w · h).

Statistics at 4-hour mark: 325 submissions, 55 accepted, �rst after 00:38

Author: Per Austrin NCPC 2021 solutions

D � Deceptive Directions

Problem

Get w × h grid map and a shortest sequence of NWSE steps to reach some treasure.
But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

1 Compute distance d [p] from start to every position p in the maze using BFS.
2 Forbid all steps that could not have been used by the correct instruction sequence:

Forbid step p → q if not used in any shortest path (i.e., if d [q] 6= d [p] + 1).
Forbid step p → q if going from p to q means taking the same step as the d [q]'th
step in the corrupted instruction sequence.

3 Run BFS again with these steps forbidden.

All reached positions at same distance as instruction length are possible treasure
locations.

4 Time complexity: O(w · h).

Statistics at 4-hour mark: 325 submissions, 55 accepted, �rst after 00:38

Author: Per Austrin NCPC 2021 solutions

D � Deceptive Directions

Problem

Get w × h grid map and a shortest sequence of NWSE steps to reach some treasure.
But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

1 Compute distance d [p] from start to every position p in the maze using BFS.
2 Forbid all steps that could not have been used by the correct instruction sequence:

Forbid step p → q if not used in any shortest path (i.e., if d [q] 6= d [p] + 1).
Forbid step p → q if going from p to q means taking the same step as the d [q]'th
step in the corrupted instruction sequence.

3 Run BFS again with these steps forbidden.

All reached positions at same distance as instruction length are possible treasure
locations.

4 Time complexity: O(w · h).

Statistics at 4-hour mark: 325 submissions, 55 accepted, �rst after 00:38
Author: Per Austrin NCPC 2021 solutions

F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.
2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.
Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31

Author: Bergur Snorrason NCPC 2021 solutions

F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.

2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.
Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31

Author: Bergur Snorrason NCPC 2021 solutions

F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.
2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.
Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31

Author: Bergur Snorrason NCPC 2021 solutions

F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.
2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.
Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31

Author: Bergur Snorrason NCPC 2021 solutions

F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.
2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.
Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31

Author: Bergur Snorrason NCPC 2021 solutions

F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.
2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.
Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31

Author: Bergur Snorrason NCPC 2021 solutions

F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.
2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.

Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31

Author: Bergur Snorrason NCPC 2021 solutions

F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.
2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.
Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31

Author: Bergur Snorrason NCPC 2021 solutions

F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.
2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.
Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31

Author: Bergur Snorrason NCPC 2021 solutions

F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.
2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.
Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31

Author: Bergur Snorrason NCPC 2021 solutions

F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.
2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.
Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31
Author: Bergur Snorrason NCPC 2021 solutions

C � Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and n − k vertices blue such that
every shortest path from 1 to n has a monochromatic edge.

Solution

1 Dijkstra's algorithm �nds all edges that are part of some shortest path from 1 to n.

2 These edges form a directed acyclic graph. Find a topological ordering.
3 Color the �rst k vertices in the ordering red, and the remaining ones blue:

A shortest path from 1 to n now only switches between red and blue once, so every
shortest path on 3 or more vertices must have a monochromatic edge.

4 Special case: this does not work if there is a direct edge from 1 to n.

Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
We only need to make sure 1 and n get the same color.
Always possible, except if n = 2 and k = 1.

Statistics at 4-hour mark: 67 submissions, 15 accepted, �rst after 01:39

Author: Nils Gustafsson NCPC 2021 solutions

C � Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and n − k vertices blue such that
every shortest path from 1 to n has a monochromatic edge.

Solution

1 Dijkstra's algorithm �nds all edges that are part of some shortest path from 1 to n.

2 These edges form a directed acyclic graph. Find a topological ordering.
3 Color the �rst k vertices in the ordering red, and the remaining ones blue:

A shortest path from 1 to n now only switches between red and blue once, so every
shortest path on 3 or more vertices must have a monochromatic edge.

4 Special case: this does not work if there is a direct edge from 1 to n.

Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
We only need to make sure 1 and n get the same color.
Always possible, except if n = 2 and k = 1.

Statistics at 4-hour mark: 67 submissions, 15 accepted, �rst after 01:39

Author: Nils Gustafsson NCPC 2021 solutions

C � Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and n − k vertices blue such that
every shortest path from 1 to n has a monochromatic edge.

Solution

1 Dijkstra's algorithm �nds all edges that are part of some shortest path from 1 to n.

2 These edges form a directed acyclic graph. Find a topological ordering.

3 Color the �rst k vertices in the ordering red, and the remaining ones blue:

A shortest path from 1 to n now only switches between red and blue once, so every
shortest path on 3 or more vertices must have a monochromatic edge.

4 Special case: this does not work if there is a direct edge from 1 to n.

Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
We only need to make sure 1 and n get the same color.
Always possible, except if n = 2 and k = 1.

Statistics at 4-hour mark: 67 submissions, 15 accepted, �rst after 01:39

Author: Nils Gustafsson NCPC 2021 solutions

C � Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and n − k vertices blue such that
every shortest path from 1 to n has a monochromatic edge.

Solution

1 Dijkstra's algorithm �nds all edges that are part of some shortest path from 1 to n.

2 These edges form a directed acyclic graph. Find a topological ordering.
3 Color the �rst k vertices in the ordering red, and the remaining ones blue:

A shortest path from 1 to n now only switches between red and blue once, so every
shortest path on 3 or more vertices must have a monochromatic edge.

4 Special case: this does not work if there is a direct edge from 1 to n.

Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
We only need to make sure 1 and n get the same color.
Always possible, except if n = 2 and k = 1.

Statistics at 4-hour mark: 67 submissions, 15 accepted, �rst after 01:39

Author: Nils Gustafsson NCPC 2021 solutions

C � Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and n − k vertices blue such that
every shortest path from 1 to n has a monochromatic edge.

Solution

1 Dijkstra's algorithm �nds all edges that are part of some shortest path from 1 to n.

2 These edges form a directed acyclic graph. Find a topological ordering.
3 Color the �rst k vertices in the ordering red, and the remaining ones blue:

A shortest path from 1 to n now only switches between red and blue once, so every
shortest path on 3 or more vertices must have a monochromatic edge.

4 Special case: this does not work if there is a direct edge from 1 to n.

Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
We only need to make sure 1 and n get the same color.
Always possible, except if n = 2 and k = 1.

Statistics at 4-hour mark: 67 submissions, 15 accepted, �rst after 01:39

Author: Nils Gustafsson NCPC 2021 solutions

C � Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and n − k vertices blue such that
every shortest path from 1 to n has a monochromatic edge.

Solution

1 Dijkstra's algorithm �nds all edges that are part of some shortest path from 1 to n.

2 These edges form a directed acyclic graph. Find a topological ordering.
3 Color the �rst k vertices in the ordering red, and the remaining ones blue:

A shortest path from 1 to n now only switches between red and blue once, so every
shortest path on 3 or more vertices must have a monochromatic edge.

4 Special case: this does not work if there is a direct edge from 1 to n.

Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
We only need to make sure 1 and n get the same color.

Always possible, except if n = 2 and k = 1.

Statistics at 4-hour mark: 67 submissions, 15 accepted, �rst after 01:39

Author: Nils Gustafsson NCPC 2021 solutions

C � Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and n − k vertices blue such that
every shortest path from 1 to n has a monochromatic edge.

Solution

1 Dijkstra's algorithm �nds all edges that are part of some shortest path from 1 to n.

2 These edges form a directed acyclic graph. Find a topological ordering.
3 Color the �rst k vertices in the ordering red, and the remaining ones blue:

A shortest path from 1 to n now only switches between red and blue once, so every
shortest path on 3 or more vertices must have a monochromatic edge.

4 Special case: this does not work if there is a direct edge from 1 to n.

Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
We only need to make sure 1 and n get the same color.
Always possible, except if n = 2 and k = 1.

Statistics at 4-hour mark: 67 submissions, 15 accepted, �rst after 01:39

Author: Nils Gustafsson NCPC 2021 solutions

C � Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and n − k vertices blue such that
every shortest path from 1 to n has a monochromatic edge.

Solution

1 Dijkstra's algorithm �nds all edges that are part of some shortest path from 1 to n.

2 These edges form a directed acyclic graph. Find a topological ordering.
3 Color the �rst k vertices in the ordering red, and the remaining ones blue:

A shortest path from 1 to n now only switches between red and blue once, so every
shortest path on 3 or more vertices must have a monochromatic edge.

4 Special case: this does not work if there is a direct edge from 1 to n.

Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
We only need to make sure 1 and n get the same color.
Always possible, except if n = 2 and k = 1.

Statistics at 4-hour mark: 67 submissions, 15 accepted, �rst after 01:39
Author: Nils Gustafsson NCPC 2021 solutions

H � Hiring Help

Problem

Given productivity values `i , fi of n coders and productivity `, f of consultant for t-hour
long project, is there a weighted average of coders such that `avg ≥ `/t and favg ≥ f /t?
Handle many queries like this, interleaved with some of the n coders leaving.

Geometric View

1 The coders are a set of points P in 2D.

2 The consultant query is another point q in 2D.

3 The weighted average exists if and only if q is
below the upper side of the convex hull of P .

4 Coders leaving corresponds to points being
removed, leading to the convex hull changing.

`

f

(`1, f1)

(`2, f2)

(`3, f3)

(`4, f4)

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Problem

Given productivity values `i , fi of n coders and productivity `, f of consultant for t-hour
long project, is there a weighted average of coders such that `avg ≥ `/t and favg ≥ f /t?
Handle many queries like this, interleaved with some of the n coders leaving.

Geometric View

1 The coders are a set of points P in 2D.

2 The consultant query is another point q in 2D.

3 The weighted average exists if and only if q is
below the upper side of the convex hull of P .

4 Coders leaving corresponds to points being
removed, leading to the convex hull changing.

`

f

(`1, f1)

(`2, f2)

(`3, f3)

(`4, f4)

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Problem

Given productivity values `i , fi of n coders and productivity `, f of consultant for t-hour
long project, is there a weighted average of coders such that `avg ≥ `/t and favg ≥ f /t?
Handle many queries like this, interleaved with some of the n coders leaving.

Geometric View

1 The coders are a set of points P in 2D.

2 The consultant query is another point q in 2D.

3 The weighted average exists if and only if q is
below the upper side of the convex hull of P .

4 Coders leaving corresponds to points being
removed, leading to the convex hull changing.

`

f (`/t, f/t)

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Problem

Given productivity values `i , fi of n coders and productivity `, f of consultant for t-hour
long project, is there a weighted average of coders such that `avg ≥ `/t and favg ≥ f /t?
Handle many queries like this, interleaved with some of the n coders leaving.

Geometric View

1 The coders are a set of points P in 2D.

2 The consultant query is another point q in 2D.

3 The weighted average exists if and only if q is
below the upper side of the convex hull of P .

4 Coders leaving corresponds to points being
removed, leading to the convex hull changing.

`

f

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Problem

Given productivity values `i , fi of n coders and productivity `, f of consultant for t-hour
long project, is there a weighted average of coders such that `avg ≥ `/t and favg ≥ f /t?
Handle many queries like this, interleaved with some of the n coders leaving.

Geometric View

1 The coders are a set of points P in 2D.

2 The consultant query is another point q in 2D.

3 The weighted average exists if and only if q is
below the upper side of the convex hull of P .

4 Coders leaving corresponds to points being
removed, leading to the convex hull changing.

`

f

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under removals of
points and queries about whether other points (x∗, y∗) are below the hull.

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under removals of
points and queries about whether other points (x∗, y∗) are below the hull.

Solution

1 The hull is a piecewise linear function, represent it as a sorted set of points
(x1, y1), (x2, y2), . . . , (xt , yt) where x1 < x2 < . . . xt and y1 > y2 > . . . yt .

2 For a query (x∗, y∗), �nd index i such that xi−1 < x∗ ≤ xi and check if (x∗, y∗) is
below line from (xi−1, yi−1) to (xi , yi).

3 Handling removals can be done,

but if we instead run the events in reverse order,
the removals become additions, which are easier to handle.

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under removals of
points and queries about whether other points (x∗, y∗) are below the hull.

Solution

1 The hull is a piecewise linear function, represent it as a sorted set of points
(x1, y1), (x2, y2), . . . , (xt , yt) where x1 < x2 < . . . xt and y1 > y2 > . . . yt .

2 For a query (x∗, y∗), �nd index i such that xi−1 < x∗ ≤ xi and check if (x∗, y∗) is
below line from (xi−1, yi−1) to (xi , yi).

3 Handling removals can be done,

but if we instead run the events in reverse order,
the removals become additions, which are easier to handle.

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under removals of
points and queries about whether other points (x∗, y∗) are below the hull.

Solution

1 The hull is a piecewise linear function, represent it as a sorted set of points
(x1, y1), (x2, y2), . . . , (xt , yt) where x1 < x2 < . . . xt and y1 > y2 > . . . yt .

2 For a query (x∗, y∗), �nd index i such that xi−1 < x∗ ≤ xi and check if (x∗, y∗) is
below line from (xi−1, yi−1) to (xi , yi).

3 Handling removals can be done,

but if we instead run the events in reverse order,
the removals become additions, which are easier to handle.

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under additions of
points and queries about whether other points (x∗, y∗) are below the hull.

Solution

1 The hull is a piecewise linear function, represent it as a sorted set of points
(x1, y1), (x2, y2), . . . , (xt , yt) where x1 < x2 < . . . xt and y1 > y2 > . . . yt .

2 For a query (x∗, y∗), �nd index i such that xi−1 < x∗ ≤ xi and check if (x∗, y∗) is
below line from (xi−1, yi−1) to (xi , yi).

3 Handling removals can be done, but if we instead run the events in reverse order,
the removals become additions, which are easier to handle.

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under additions of
points and queries about whether other points (x∗, y∗) are below the hull.

Handling additions

1 If point to add is outside current hull, add it to our current set of points.

2 Remove any concavities formed to left and right of new point.

3 Issue(?): addition may take a long time because many old points could be
discarded from hull.

4 Not an issue: once a point is discarded, it can never be added back, so total
number of removals for all events is ≤ n.

5 O((n + e) log n) total time complexity.

Statistics at 4-hour mark: 24 submissions, 7 accepted, �rst after 01:42

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under additions of
points and queries about whether other points (x∗, y∗) are below the hull.

Handling additions

1 If point to add is outside current hull, add it to our current set of points.

2 Remove any concavities formed to left and right of new point.

3 Issue(?): addition may take a long time because many old points could be
discarded from hull.

4 Not an issue: once a point is discarded, it can never be added back, so total
number of removals for all events is ≤ n.

5 O((n + e) log n) total time complexity.

Statistics at 4-hour mark: 24 submissions, 7 accepted, �rst after 01:42

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under additions of
points and queries about whether other points (x∗, y∗) are below the hull.

Handling additions

1 If point to add is outside current hull, add it to our current set of points.

2 Remove any concavities formed to left and right of new point.

3 Issue(?): addition may take a long time because many old points could be
discarded from hull.

4 Not an issue: once a point is discarded, it can never be added back, so total
number of removals for all events is ≤ n.

5 O((n + e) log n) total time complexity.

Statistics at 4-hour mark: 24 submissions, 7 accepted, �rst after 01:42

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under additions of
points and queries about whether other points (x∗, y∗) are below the hull.

Handling additions

1 If point to add is outside current hull, add it to our current set of points.

2 Remove any concavities formed to left and right of new point.

3 Issue(?): addition may take a long time because many old points could be
discarded from hull.

4 Not an issue: once a point is discarded, it can never be added back, so total
number of removals for all events is ≤ n.

5 O((n + e) log n) total time complexity.

Statistics at 4-hour mark: 24 submissions, 7 accepted, �rst after 01:42

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under additions of
points and queries about whether other points (x∗, y∗) are below the hull.

Handling additions

1 If point to add is outside current hull, add it to our current set of points.

2 Remove any concavities formed to left and right of new point.

3 Issue(?): addition may take a long time because many old points could be
discarded from hull.

4 Not an issue: once a point is discarded, it can never be added back, so total
number of removals for all events is ≤ n.

5 O((n + e) log n) total time complexity.

Statistics at 4-hour mark: 24 submissions, 7 accepted, �rst after 01:42

Author: Bergur Snorrason NCPC 2021 solutions

H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under additions of
points and queries about whether other points (x∗, y∗) are below the hull.

Handling additions

1 If point to add is outside current hull, add it to our current set of points.

2 Remove any concavities formed to left and right of new point.

3 Issue(?): addition may take a long time because many old points could be
discarded from hull.

4 Not an issue: once a point is discarded, it can never be added back, so total
number of removals for all events is ≤ n.

5 O((n + e) log n) total time complexity.

Statistics at 4-hour mark: 24 submissions, 7 accepted, �rst after 01:42

Author: Bergur Snorrason NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

1 Let Ai = a1, . . . , ai be the pre�x of �rst i values of a.

2 Let s be the number of indices 1 ≤ i < n such that Ai is a permutation of Bi .
3 Then the number of ways is 2s − 1:

breaking up a at any non-empty subset of these indices results in a valid separation
breaking at any other index results in an invalid separation

4 To �nd s quickly, can use a permutation-invariant hash function.

Assign a random hash value h(x) to each array value x .

De�ne hash h(Ai) of a pre�x to be
∑i

j=1
h(aj).

If no hash collisions then Ai is a permutation of Bi if and only if h(Ai) = h(Bi).

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

1 Let Ai = a1, . . . , ai be the pre�x of �rst i values of a.

2 Let s be the number of indices 1 ≤ i < n such that Ai is a permutation of Bi .

3 Then the number of ways is 2s − 1:

breaking up a at any non-empty subset of these indices results in a valid separation
breaking at any other index results in an invalid separation

4 To �nd s quickly, can use a permutation-invariant hash function.

Assign a random hash value h(x) to each array value x .

De�ne hash h(Ai) of a pre�x to be
∑i

j=1
h(aj).

If no hash collisions then Ai is a permutation of Bi if and only if h(Ai) = h(Bi).

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

1 Let Ai = a1, . . . , ai be the pre�x of �rst i values of a.

2 Let s be the number of indices 1 ≤ i < n such that Ai is a permutation of Bi .
3 Then the number of ways is 2s − 1:

breaking up a at any non-empty subset of these indices results in a valid separation
breaking at any other index results in an invalid separation

4 To �nd s quickly, can use a permutation-invariant hash function.

Assign a random hash value h(x) to each array value x .

De�ne hash h(Ai) of a pre�x to be
∑i

j=1
h(aj).

If no hash collisions then Ai is a permutation of Bi if and only if h(Ai) = h(Bi).

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

1 Let Ai = a1, . . . , ai be the pre�x of �rst i values of a.

2 Let s be the number of indices 1 ≤ i < n such that Ai is a permutation of Bi .
3 Then the number of ways is 2s − 1:

breaking up a at any non-empty subset of these indices results in a valid separation

breaking at any other index results in an invalid separation

4 To �nd s quickly, can use a permutation-invariant hash function.

Assign a random hash value h(x) to each array value x .

De�ne hash h(Ai) of a pre�x to be
∑i

j=1
h(aj).

If no hash collisions then Ai is a permutation of Bi if and only if h(Ai) = h(Bi).

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

1 Let Ai = a1, . . . , ai be the pre�x of �rst i values of a.

2 Let s be the number of indices 1 ≤ i < n such that Ai is a permutation of Bi .
3 Then the number of ways is 2s − 1:

breaking up a at any non-empty subset of these indices results in a valid separation
breaking at any other index results in an invalid separation

4 To �nd s quickly, can use a permutation-invariant hash function.

Assign a random hash value h(x) to each array value x .

De�ne hash h(Ai) of a pre�x to be
∑i

j=1
h(aj).

If no hash collisions then Ai is a permutation of Bi if and only if h(Ai) = h(Bi).

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

1 Let Ai = a1, . . . , ai be the pre�x of �rst i values of a.

2 Let s be the number of indices 1 ≤ i < n such that Ai is a permutation of Bi .
3 Then the number of ways is 2s − 1:

breaking up a at any non-empty subset of these indices results in a valid separation
breaking at any other index results in an invalid separation

4 To �nd s quickly, can use a permutation-invariant hash function.

Assign a random hash value h(x) to each array value x .

De�ne hash h(Ai) of a pre�x to be
∑i

j=1
h(aj).

If no hash collisions then Ai is a permutation of Bi if and only if h(Ai) = h(Bi).

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

1 Let Ai = a1, . . . , ai be the pre�x of �rst i values of a.

2 Let s be the number of indices 1 ≤ i < n such that Ai is a permutation of Bi .
3 Then the number of ways is 2s − 1:

breaking up a at any non-empty subset of these indices results in a valid separation
breaking at any other index results in an invalid separation

4 To �nd s quickly, can use a permutation-invariant hash function.

Assign a random hash value h(x) to each array value x .

De�ne hash h(Ai) of a pre�x to be
∑i

j=1
h(aj).

If no hash collisions then Ai is a permutation of Bi if and only if h(Ai) = h(Bi).

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

1 Let Ai = a1, . . . , ai be the pre�x of �rst i values of a.

2 Let s be the number of indices 1 ≤ i < n such that Ai is a permutation of Bi .
3 Then the number of ways is 2s − 1:

breaking up a at any non-empty subset of these indices results in a valid separation
breaking at any other index results in an invalid separation

4 To �nd s quickly, can use a permutation-invariant hash function.

Assign a random hash value h(x) to each array value x .

De�ne hash h(Ai) of a pre�x to be
∑i

j=1
h(aj).

If no hash collisions then Ai is a permutation of Bi if and only if h(Ai) = h(Bi).

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

1 Let Ai = a1, . . . , ai be the pre�x of �rst i values of a.

2 Let s be the number of indices 1 ≤ i < n such that Ai is a permutation of Bi .
3 Then the number of ways is 2s − 1:

breaking up a at any non-empty subset of these indices results in a valid separation
breaking at any other index results in an invalid separation

4 To �nd s quickly, can use a permutation-invariant hash function.

Assign a random hash value h(x) to each array value x .

De�ne hash h(Ai) of a pre�x to be
∑i

j=1
h(aj).

If no hash collisions then Ai is a permutation of Bi if and only if h(Ai) = h(Bi).

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the circular case

1 For each hash value z , let s(z) be number of indices 0 ≤ i < n such that
h(Ai)− h(Bi) = z .

2 Then (assuming no hash collisions), the number of ways is
∑

z 2
s(z) − s(z)− 1.

For each z , taking any subset of at least 2 of the s(z) indices is a valid separation.
Taking two indices with di�erent values of h(Ai)− h(Bi) gives an invalid separation.

3 Results in an O(n) time solution, assuming O(1)-time dictionaries which can be
used to store the frequency of each hash value.

Statistics at 4-hour mark: 11 submissions, 5 accepted, �rst after 01:51

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the circular case

1 For each hash value z , let s(z) be number of indices 0 ≤ i < n such that
h(Ai)− h(Bi) = z .

2 Then (assuming no hash collisions), the number of ways is
∑

z 2
s(z) − s(z)− 1.

For each z , taking any subset of at least 2 of the s(z) indices is a valid separation.
Taking two indices with di�erent values of h(Ai)− h(Bi) gives an invalid separation.

3 Results in an O(n) time solution, assuming O(1)-time dictionaries which can be
used to store the frequency of each hash value.

Statistics at 4-hour mark: 11 submissions, 5 accepted, �rst after 01:51

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the circular case

1 For each hash value z , let s(z) be number of indices 0 ≤ i < n such that
h(Ai)− h(Bi) = z .

2 Then (assuming no hash collisions), the number of ways is
∑

z 2
s(z) − s(z)− 1.

For each z , taking any subset of at least 2 of the s(z) indices is a valid separation.

Taking two indices with di�erent values of h(Ai)− h(Bi) gives an invalid separation.

3 Results in an O(n) time solution, assuming O(1)-time dictionaries which can be
used to store the frequency of each hash value.

Statistics at 4-hour mark: 11 submissions, 5 accepted, �rst after 01:51

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the circular case

1 For each hash value z , let s(z) be number of indices 0 ≤ i < n such that
h(Ai)− h(Bi) = z .

2 Then (assuming no hash collisions), the number of ways is
∑

z 2
s(z) − s(z)− 1.

For each z , taking any subset of at least 2 of the s(z) indices is a valid separation.
Taking two indices with di�erent values of h(Ai)− h(Bi) gives an invalid separation.

3 Results in an O(n) time solution, assuming O(1)-time dictionaries which can be
used to store the frequency of each hash value.

Statistics at 4-hour mark: 11 submissions, 5 accepted, �rst after 01:51

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the circular case

1 For each hash value z , let s(z) be number of indices 0 ≤ i < n such that
h(Ai)− h(Bi) = z .

2 Then (assuming no hash collisions), the number of ways is
∑

z 2
s(z) − s(z)− 1.

For each z , taking any subset of at least 2 of the s(z) indices is a valid separation.
Taking two indices with di�erent values of h(Ai)− h(Bi) gives an invalid separation.

3 Results in an O(n) time solution, assuming O(1)-time dictionaries which can be
used to store the frequency of each hash value.

Statistics at 4-hour mark: 11 submissions, 5 accepted, �rst after 01:51

Author: Nils Gustafsson NCPC 2021 solutions

I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the circular case

1 For each hash value z , let s(z) be number of indices 0 ≤ i < n such that
h(Ai)− h(Bi) = z .

2 Then (assuming no hash collisions), the number of ways is
∑

z 2
s(z) − s(z)− 1.

For each z , taking any subset of at least 2 of the s(z) indices is a valid separation.
Taking two indices with di�erent values of h(Ai)− h(Bi) gives an invalid separation.

3 Results in an O(n) time solution, assuming O(1)-time dictionaries which can be
used to store the frequency of each hash value.

Statistics at 4-hour mark: 11 submissions, 5 accepted, �rst after 01:51

Author: Nils Gustafsson NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

1 Compute the number of bars of each bar size (there are 21 sizes).

2 Always greedily pair up bars so that you never have 2 or more of any size.

3 Find minimum number of breaks needed for remaining bars.

4 Can be computed e�ciently by dynamic programming over 221 states.

5 Does not always give the optimum number of breaks. Example:

3x2 3x3 1x5 2x5 3x5 3x5

Split one 3x5 as 3x2+3x3 and the other as 1x5+2x5 to get away with two splits.

6 But this does give upper bound on number of breaks that may be needed (it is 9).

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

1 Compute the number of bars of each bar size (there are 21 sizes).

2 Always greedily pair up bars so that you never have 2 or more of any size.

3 Find minimum number of breaks needed for remaining bars.

4 Can be computed e�ciently by dynamic programming over 221 states.

5 Does not always give the optimum number of breaks. Example:

3x2 3x3 1x5 2x5 3x5 3x5

Split one 3x5 as 3x2+3x3 and the other as 1x5+2x5 to get away with two splits.

6 But this does give upper bound on number of breaks that may be needed (it is 9).

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

1 Compute the number of bars of each bar size (there are 21 sizes).

2 Always greedily pair up bars so that you never have 2 or more of any size.

3 Find minimum number of breaks needed for remaining bars.

4 Can be computed e�ciently by dynamic programming over 221 states.

5 Does not always give the optimum number of breaks. Example:

3x2 3x3 1x5 2x5 3x5 3x5

Split one 3x5 as 3x2+3x3 and the other as 1x5+2x5 to get away with two splits.

6 But this does give upper bound on number of breaks that may be needed (it is 9).

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

1 Compute the number of bars of each bar size (there are 21 sizes).

2 Always greedily pair up bars so that you never have 2 or more of any size.

3 Find minimum number of breaks needed for remaining bars.

4 Can be computed e�ciently by dynamic programming over 221 states.

5 Does not always give the optimum number of breaks. Example:

3x2 3x3 1x5 2x5 3x5 3x5

Split one 3x5 as 3x2+3x3 and the other as 1x5+2x5 to get away with two splits.

6 But this does give upper bound on number of breaks that may be needed (it is 9).

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

1 Compute the number of bars of each bar size (there are 21 sizes).

2 Always greedily pair up bars so that you never have 2 or more of any size.

3 Find minimum number of breaks needed for remaining bars.

4 Can be computed e�ciently by dynamic programming over 221 states.

5 Does not always give the optimum number of breaks. Example:

3x2 3x3 1x5 2x5 3x5 3x5

Split one 3x5 as 3x2+3x3 and the other as 1x5+2x5 to get away with two splits.

6 But this does give upper bound on number of breaks that may be needed (it is 9).

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

1 Compute the number of bars of each bar size (there are 21 sizes).

2 Always greedily pair up bars so that you never have 2 or more of any size.

3 Find minimum number of breaks needed for remaining bars.

4 Can be computed e�ciently by dynamic programming over 221 states.

5 Does not always give the optimum number of breaks. Example:

3x2 3x3 1x5 2x5 3x5 3x5

Split one 3x5 as 3x2+3x3 and the other as 1x5+2x5 to get away with two splits.

6 But this does give upper bound on number of breaks that may be needed (it is 9).

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Actual Solution

1 Recursively search for the best way to break the bars, going from larger bars to
smaller ones.

2 Keep track of number of breaks made and how many squares can be partitioned
among the larger bars already considered.

3 Avoid recursive calls that will produce more breaks than best solution found.

4 Since there is no need for more than 9 breaks and any bar be broken in at most 5
di�erent ways, this turns out to be fast enough.

Statistics at 4-hour mark: 17 submissions, 1 accepted, �rst after 01:13

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Actual Solution

1 Recursively search for the best way to break the bars, going from larger bars to
smaller ones.

2 Keep track of number of breaks made and how many squares can be partitioned
among the larger bars already considered.

3 Avoid recursive calls that will produce more breaks than best solution found.

4 Since there is no need for more than 9 breaks and any bar be broken in at most 5
di�erent ways, this turns out to be fast enough.

Statistics at 4-hour mark: 17 submissions, 1 accepted, �rst after 01:13

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Actual Solution

1 Recursively search for the best way to break the bars, going from larger bars to
smaller ones.

2 Keep track of number of breaks made and how many squares can be partitioned
among the larger bars already considered.

3 Avoid recursive calls that will produce more breaks than best solution found.

4 Since there is no need for more than 9 breaks and any bar be broken in at most 5
di�erent ways, this turns out to be fast enough.

Statistics at 4-hour mark: 17 submissions, 1 accepted, �rst after 01:13

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Actual Solution

1 Recursively search for the best way to break the bars, going from larger bars to
smaller ones.

2 Keep track of number of breaks made and how many squares can be partitioned
among the larger bars already considered.

3 Avoid recursive calls that will produce more breaks than best solution found.

4 Since there is no need for more than 9 breaks and any bar be broken in at most 5
di�erent ways, this turns out to be fast enough.

Statistics at 4-hour mark: 17 submissions, 1 accepted, �rst after 01:13

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Actual Solution

1 Recursively search for the best way to break the bars, going from larger bars to
smaller ones.

2 Keep track of number of breaks made and how many squares can be partitioned
among the larger bars already considered.

3 Avoid recursive calls that will produce more breaks than best solution found.

4 Since there is no need for more than 9 breaks and any bar be broken in at most 5
di�erent ways, this turns out to be fast enough.

Statistics at 4-hour mark: 17 submissions, 1 accepted, �rst after 01:13

Author: Mats Petter Wallander and Andreas Björklund NCPC 2021 solutions

E � Eavesdropper Evasion

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of
them are fully sent within any time frame of length x .

Author: Jimmy Mårdell NCPC 2021 solutions

E � Eavesdropper Evasion

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of
them are fully sent within any time frame of length x .

Solution

1 Messages longer than x can be ignored as they can never be intercepted

Mostly - �nal result can not be smaller than the longest message!

2 Solve the case if at most 1 message was allowed to be intercepted

3 Generalize it to at most 2 intercepted messages

Author: Jimmy Mårdell NCPC 2021 solutions

E � Eavesdropper Evasion

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of
them are fully sent within any time frame of length x .

Solution

1 Messages longer than x can be ignored as they can never be intercepted

Mostly - �nal result can not be smaller than the longest message!

2 Solve the case if at most 1 message was allowed to be intercepted

3 Generalize it to at most 2 intercepted messages

Author: Jimmy Mårdell NCPC 2021 solutions

E � Eavesdropper Evasion

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of
them are fully sent within any time frame of length x .

Solution

1 Messages longer than x can be ignored as they can never be intercepted

Mostly - �nal result can not be smaller than the longest message!

2 Solve the case if at most 1 message was allowed to be intercepted

3 Generalize it to at most 2 intercepted messages

Author: Jimmy Mårdell NCPC 2021 solutions

E � Eavesdropper Evasion

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of
them are fully sent within any time frame of length x .

Solution

1 Messages longer than x can be ignored as they can never be intercepted

Mostly - �nal result can not be smaller than the longest message!

2 Solve the case if at most 1 message was allowed to be intercepted

3 Generalize it to at most 2 intercepted messages

Author: Jimmy Mårdell NCPC 2021 solutions

E � Eavesdropper Evasion

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of
them are fully sent within any time frame of length x .

Solution if at most 1 message is allowed to be intercepted

1 If a message (regardless of length) starts at time a, the next message can start no
earlier than time a+ x + 1− t, where t is the length of the next message.

2 Repeating this, the total time to send all n messages becomes

x + 1+
n−1∑
i=2

(x + 1− ti),

where ti is the length of the ith message sent.

3 Note: length of the �rst and last message does not a�ect the total send time!

4 By placing the two shortest messages �rst and last, we get the optimal solution.

Author: Jimmy Mårdell NCPC 2021 solutions

E � Eavesdropper Evasion

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of
them are fully sent within any time frame of length x .

Solution if at most 1 message is allowed to be intercepted

1 If a message (regardless of length) starts at time a, the next message can start no
earlier than time a+ x + 1− t, where t is the length of the next message.

2 Repeating this, the total time to send all n messages becomes

x + 1+
n−1∑
i=2

(x + 1− ti),

where ti is the length of the ith message sent.

3 Note: length of the �rst and last message does not a�ect the total send time!

4 By placing the two shortest messages �rst and last, we get the optimal solution.

Author: Jimmy Mårdell NCPC 2021 solutions

E � Eavesdropper Evasion

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of
them are fully sent within any time frame of length x .

Solution if at most 1 message is allowed to be intercepted

1 If a message (regardless of length) starts at time a, the next message can start no
earlier than time a+ x + 1− t, where t is the length of the next message.

2 Repeating this, the total time to send all n messages becomes

x + 1+
n−1∑
i=2

(x + 1− ti),

where ti is the length of the ith message sent.

3 Note: length of the �rst and last message does not a�ect the total send time!

4 By placing the two shortest messages �rst and last, we get the optimal solution.

Author: Jimmy Mårdell NCPC 2021 solutions

E � Eavesdropper Evasion

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of
them are fully sent within any time frame of length x .

Solution if at most 1 message is allowed to be intercepted

1 If a message (regardless of length) starts at time a, the next message can start no
earlier than time a+ x + 1− t, where t is the length of the next message.

2 Repeating this, the total time to send all n messages becomes

x + 1+
n−1∑
i=2

(x + 1− ti),

where ti is the length of the ith message sent.

3 Note: length of the �rst and last message does not a�ect the total send time!

4 By placing the two shortest messages �rst and last, we get the optimal solution.

Author: Jimmy Mårdell NCPC 2021 solutions

E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti).

Take the 4 shortest messages and put �rst and last in each channel.
Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.
5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW) = O(n2x). Too slow.
Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions

https://doi.org/10.1006/jagm.1999.1034

E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti).

Take the 4 shortest messages and put �rst and last in each channel.
Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.
5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW) = O(n2x). Too slow.
Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions

https://doi.org/10.1006/jagm.1999.1034

E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti).

Take the 4 shortest messages and put �rst and last in each channel.
Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.
5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW) = O(n2x). Too slow.
Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions

https://doi.org/10.1006/jagm.1999.1034

E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti).

Take the 4 shortest messages and put �rst and last in each channel.

Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.
5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW) = O(n2x). Too slow.
Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions

https://doi.org/10.1006/jagm.1999.1034

E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti).

Take the 4 shortest messages and put �rst and last in each channel.
Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.
5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW) = O(n2x). Too slow.
Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions

https://doi.org/10.1006/jagm.1999.1034

E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti).

Take the 4 shortest messages and put �rst and last in each channel.
Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.
5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW) = O(n2x). Too slow.
Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions

https://doi.org/10.1006/jagm.1999.1034

E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti).

Take the 4 shortest messages and put �rst and last in each channel.
Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.

5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW) = O(n2x). Too slow.
Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions

https://doi.org/10.1006/jagm.1999.1034

E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti).

Take the 4 shortest messages and put �rst and last in each channel.
Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.
5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW) = O(n2x). Too slow.
Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions

https://doi.org/10.1006/jagm.1999.1034

E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti).

Take the 4 shortest messages and put �rst and last in each channel.
Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.
5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW) = O(n2x). Too slow.

Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions

https://doi.org/10.1006/jagm.1999.1034

E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti).

Take the 4 shortest messages and put �rst and last in each channel.
Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.
5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW) = O(n2x). Too slow.
Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions

https://doi.org/10.1006/jagm.1999.1034

E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti).

Take the 4 shortest messages and put �rst and last in each channel.
Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.
5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW) = O(n2x). Too slow.
Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions

https://doi.org/10.1006/jagm.1999.1034

M � Marvelous Marathon

Problem

Find a path of length x subject to certain constraints in a 2×m grid so that the sum of
the values in the cells of the path is maximized.

Formalized version of problem

Find integers 0 ≤ a ≤ b ≤ c ≤ d ≤ m such that 2(b − a) + (c − b) + 2(d − c) = x .

Maximize


sum of cells of one row in range [a, d)

plus
sum of cells of other row in ranges [a, b) and [c , d)



9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Problem

Find a path of length x subject to certain constraints in a 2×m grid so that the sum of
the values in the cells of the path is maximized.

Formalized version of problem

Find integers 0 ≤ a ≤ b ≤ c ≤ d ≤ m such that 2(b − a) + (c − b) + 2(d − c) = x .

Maximize


sum of cells of one row in range [a, d)

plus
sum of cells of other row in ranges [a, b) and [c , d)



9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Problem

Find a path of length x subject to certain constraints in a 2×m grid so that the sum of
the values in the cells of the path is maximized.

Formalized version of problem

Find integers 0 ≤ a ≤ b ≤ c ≤ d ≤ m such that 2(b − a) + (c − b) + 2(d − c) = x .

Maximize


sum of cells of one row in range [a, d)

plus
sum of cells of other row in ranges [a, b) and [c , d)


9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Solution outline

1 m is very large, cannot loop over all cells

2 Large parts of grid look the same because only n segments

3 Separately handle three main cases: 0, 1 or 2 U-turns

4 We focus here only on the hardest case with 2 U-turns.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Solution outline

1 m is very large, cannot loop over all cells

2 Large parts of grid look the same because only n segments

3 Separately handle three main cases: 0, 1 or 2 U-turns

4 We focus here only on the hardest case with 2 U-turns.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Solution outline

1 m is very large, cannot loop over all cells

2 Large parts of grid look the same because only n segments

3 Separately handle three main cases: 0, 1 or 2 U-turns

4 We focus here only on the hardest case with 2 U-turns.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Solution outline

1 m is very large, cannot loop over all cells

2 Large parts of grid look the same because only n segments

3 Separately handle three main cases: 0, 1 or 2 U-turns

4 We focus here only on the hardest case with 2 U-turns.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Insight 1

1 We can assume solution has the gap in the lower half

Run solution again on �ipped input to cover opposite case

2 There is an optimal solution where a or d is at a segment endpoint (or 0 or m).
Otherwise we could decrease (or increase) both a and d with 1 until either

a or d reaches a segment endpoint, or
d = c or a = b, in which case we end up with the 1 U-turn case
(handled separately, left as an exercise!)

3 We can assume a is the endpoint

Run solution again on reversed input to cover opposite case.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Insight 1

1 We can assume solution has the gap in the lower half

Run solution again on �ipped input to cover opposite case

2 There is an optimal solution where a or d is at a segment endpoint (or 0 or m).
Otherwise we could decrease (or increase) both a and d with 1 until either

a or d reaches a segment endpoint, or
d = c or a = b, in which case we end up with the 1 U-turn case
(handled separately, left as an exercise!)

3 We can assume a is the endpoint

Run solution again on reversed input to cover opposite case.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Insight 1

1 We can assume solution has the gap in the lower half

Run solution again on �ipped input to cover opposite case

2 There is an optimal solution where a or d is at a segment endpoint (or 0 or m).
Otherwise we could decrease (or increase) both a and d with 1 until either

a or d reaches a segment endpoint, or

d = c or a = b, in which case we end up with the 1 U-turn case
(handled separately, left as an exercise!)

3 We can assume a is the endpoint

Run solution again on reversed input to cover opposite case.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Insight 1

1 We can assume solution has the gap in the lower half

Run solution again on �ipped input to cover opposite case

2 There is an optimal solution where a or d is at a segment endpoint (or 0 or m).
Otherwise we could decrease (or increase) both a and d with 1 until either

a or d reaches a segment endpoint, or
d = c or a = b, in which case we end up with the 1 U-turn case
(handled separately, left as an exercise!)

3 We can assume a is the endpoint

Run solution again on reversed input to cover opposite case.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Insight 1

1 We can assume solution has the gap in the lower half

Run solution again on �ipped input to cover opposite case

2 There is an optimal solution where a or d is at a segment endpoint (or 0 or m).
Otherwise we could decrease (or increase) both a and d with 1 until either

a or d reaches a segment endpoint, or
d = c or a = b, in which case we end up with the 1 U-turn case
(handled separately, left as an exercise!)

3 We can assume a is the endpoint

Run solution again on reversed input to cover opposite case.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Insight 2

1 There is an optimal solution where b or c is at a segment endpoint, for the same
reasoning as before (except that this time we would show it by shifting b or c).

2 We end up with two cases to consider:

a and b are segment endpoints
a and c are segment endpoints

3 Will focus on the �rst of these; the other must also be solved, but is done in a very
similar fashion.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Insight 2

1 There is an optimal solution where b or c is at a segment endpoint, for the same
reasoning as before (except that this time we would show it by shifting b or c).

2 We end up with two cases to consider:

a and b are segment endpoints
a and c are segment endpoints

3 Will focus on the �rst of these; the other must also be solved, but is done in a very
similar fashion.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Insight 2

1 There is an optimal solution where b or c is at a segment endpoint, for the same
reasoning as before (except that this time we would show it by shifting b or c).

2 We end up with two cases to consider:

a and b are segment endpoints
a and c are segment endpoints

3 Will focus on the �rst of these; the other must also be solved, but is done in a very
similar fashion.

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Sliding

1 Fix some a and b. (O(n2) possible choices.)

2 Set c = b (or c = b + 1 if x is odd) and d = a+ dx/2e
3 Idea: slide c and d right (c twice as fast as d) and maintain current score.

Since grid values rarely change value, we can slide many steps at a time.
Calculate when either c or d hits next segment endpoint and jump directly there.
Repeat until c reached the end of the road.

4 �Next segment endpoint� can be found in O(1), for a total complexity of O(n3).

An optimized O(n4) implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Sliding

1 Fix some a and b. (O(n2) possible choices.)

2 Set c = b (or c = b + 1 if x is odd) and d = a+ dx/2e

3 Idea: slide c and d right (c twice as fast as d) and maintain current score.

Since grid values rarely change value, we can slide many steps at a time.
Calculate when either c or d hits next segment endpoint and jump directly there.
Repeat until c reached the end of the road.

4 �Next segment endpoint� can be found in O(1), for a total complexity of O(n3).

An optimized O(n4) implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Sliding

1 Fix some a and b. (O(n2) possible choices.)

2 Set c = b (or c = b + 1 if x is odd) and d = a+ dx/2e
3 Idea: slide c and d right (c twice as fast as d) and maintain current score.

Since grid values rarely change value, we can slide many steps at a time.
Calculate when either c or d hits next segment endpoint and jump directly there.
Repeat until c reached the end of the road.

4 �Next segment endpoint� can be found in O(1), for a total complexity of O(n3).

An optimized O(n4) implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Sliding

1 Fix some a and b. (O(n2) possible choices.)

2 Set c = b (or c = b + 1 if x is odd) and d = a+ dx/2e
3 Idea: slide c and d right (c twice as fast as d) and maintain current score.

Since grid values rarely change value, we can slide many steps at a time.

Calculate when either c or d hits next segment endpoint and jump directly there.
Repeat until c reached the end of the road.

4 �Next segment endpoint� can be found in O(1), for a total complexity of O(n3).

An optimized O(n4) implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Sliding

1 Fix some a and b. (O(n2) possible choices.)

2 Set c = b (or c = b + 1 if x is odd) and d = a+ dx/2e
3 Idea: slide c and d right (c twice as fast as d) and maintain current score.

Since grid values rarely change value, we can slide many steps at a time.
Calculate when either c or d hits next segment endpoint and jump directly there.

Repeat until c reached the end of the road.

4 �Next segment endpoint� can be found in O(1), for a total complexity of O(n3).

An optimized O(n4) implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Sliding

1 Fix some a and b. (O(n2) possible choices.)

2 Set c = b (or c = b + 1 if x is odd) and d = a+ dx/2e
3 Idea: slide c and d right (c twice as fast as d) and maintain current score.

Since grid values rarely change value, we can slide many steps at a time.
Calculate when either c or d hits next segment endpoint and jump directly there.
Repeat until c reached the end of the road.

4 �Next segment endpoint� can be found in O(1), for a total complexity of O(n3).

An optimized O(n4) implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Sliding

1 Fix some a and b. (O(n2) possible choices.)

2 Set c = b (or c = b + 1 if x is odd) and d = a+ dx/2e
3 Idea: slide c and d right (c twice as fast as d) and maintain current score.

Since grid values rarely change value, we can slide many steps at a time.
Calculate when either c or d hits next segment endpoint and jump directly there.
Repeat until c reached the end of the road.

4 �Next segment endpoint� can be found in O(1), for a total complexity of O(n3).

An optimized O(n4) implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Sliding

1 Fix some a and b. (O(n2) possible choices.)

2 Set c = b (or c = b + 1 if x is odd) and d = a+ dx/2e
3 Idea: slide c and d right (c twice as fast as d) and maintain current score.

Since grid values rarely change value, we can slide many steps at a time.
Calculate when either c or d hits next segment endpoint and jump directly there.
Repeat until c reached the end of the road.

4 �Next segment endpoint� can be found in O(1), for a total complexity of O(n3).

An optimized O(n4) implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

M � Marvelous Marathon

Sliding

1 Fix some a and b. (O(n2) possible choices.)

2 Set c = b (or c = b + 1 if x is odd) and d = a+ dx/2e
3 Idea: slide c and d right (c twice as fast as d) and maintain current score.

Since grid values rarely change value, we can slide many steps at a time.
Calculate when either c or d hits next segment endpoint and jump directly there.
Repeat until c reached the end of the road.

4 �Next segment endpoint� can be found in O(1), for a total complexity of O(n3).

An optimized O(n4) implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted

9 9 9 4 4 6

5 8 8

4

7

4

7 7 7 7 7 7

6

7

6

7

6

a b c d

Author: Jimmy Mårdell NCPC 2021 solutions

Results!

NCPC 2021 solutions

