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K � Knot Knowledge

Problem

You are given a list of numbers and then another list of the same numbers, except one
number has been removed. What number was removed?

Solution

1 This problem can be solved in many ways, the list is small so there is no need for
any special data structure or algorithm.

2 But for this problem, the most e�cient solution is also the simplest:

3 Let the �rst list of numbers be x1, x2, . . . xn and the second list be y1, y2 . . . yn−1.

4 The answer is then
n∑

k=1

xk −
n−1∑
k=1

yk .

Statistics at 4-hour mark: 248 submissions, 196 accepted, �rst after 00:01

Author: Bergur Snorrason NCPC 2021 solutions
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J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions



J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions



J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions



J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions



J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions



J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions



J � Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments
at constant speed.

Solution

1 The answer is simply the max of the distance between the starting points and the
distance between the ending points. Let us see why...

2 Useful trick: by viewing everything from the reference frame of the �rst runner, we
can instead assume that the �rst person is stationary at (0, 0).

3 Second person is at some position (x(t), y(t)) = (x0 + t · xδ, y0 + t · yδ) at time t.

4 Squared distance at time t is then x(t)2 + y(t)2 = (x0 + t · xδ)2 + (y0 + t · yδ)2

5 This is a convex quadratic function in t, so it is maximized at t = tmin or t = tmax.

Statistics at 4-hour mark: 274 submissions, 189 accepted, �rst after 00:10

Author: Pål Grønås Drange NCPC 2021 solutions



L � Locust Locus

Problem

A pair of cicada species appear every a and b years, and was last observed in year y .
Find the next year they will appear together again.

Statistics at 4-hour mark: 374 submissions, 185 accepted, �rst after 00:02
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L � Locust Locus

Problem

A pair of cicada species appear every a and b years, and was last observed in year y .
Find the next year they will appear together again.

Solution 1

1 For each year z = y + 1, y + 2, y + 3, . . .:

Check if z − y is divisible by both a and b.
Break when �rst such z is found.

2 Goes on for at most a · b steps because a · b de�nitely divides both a and b.

3 So this takes O(a · b) time which is fast enough because a and b are very small.

Statistics at 4-hour mark: 374 submissions, 185 accepted, �rst after 00:02
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L � Locust Locus

Problem

A pair of cicada species appear every a and b years, and was last observed in year y .
Find the next year they will appear together again.

Solution 2

1 The joint period of the two species is the least common multiple of a and b.

2 Answer is y + lcm(a, b).

3 Takes O(log(a · b)) time to compute.

Statistics at 4-hour mark: 374 submissions, 185 accepted, �rst after 00:02
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G � Grazed Grains

Problem

Given n ≤ 10 circles of radius ≤ 10 and with centers in [0, 10]× [0, 10], approximate
the area of their union, up to a factor 1± 0.1.

Solutiom

1 Can compute the area with high precision using numeric integration.
Not too hard, but a bit of code, and there is a simpler solution: use sampling.

2 Sample r uniformly random points in [−10, 20]× [−10, 20].
(this box chosen so that all the circles are contained in it)

3 If x of the r points are inside some circle, we estimate the area as x
r · 30

2.

4 Analysis (not needed to solve the problem): can prove that you expect a relative
error around 24/

√
r . If r > 100k this starts becoming small enough, and with

r = 1 million the sampling error is very unlikely to be too large.

Statistics at 4-hour mark: 267 submissions, 117 accepted, �rst after 00:07

Author: Nils Gustafsson NCPC 2021 solutions
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A � Antenna Analysis

Problem

Given integers x1, . . . , xn, �nd, for each i , the maximum of |xi − xj | − c |i − j | over j ≤ i .

Solution

1 Key observation: dropping the absolute values does not increase the answer.

2 Simplify problem: drop the absolute values and maximize
(xi − xj)− c(i − j) = (xi − c · i) + (−xj + c · j).

Keep track of largest value y of −xj + c · j seen so far.
Answer to simpli�ed problem is xi − c · i + y .

3 To solve original problem, separately solve variant for (xj − xi )− c(i − j) the same
way and take largest of the two.

4 Time complexity O(n).

5 More complicated solutions using balanced search trees or range trees also possible.

Statistics at 4-hour mark: 626 submissions, 88 accepted, �rst after 00:04

Author: Antti Laaksonen NCPC 2021 solutions
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Problem

Given integers x1, . . . , xn, �nd, for each i , the maximum of |xi − xj | − c |i − j | over j ≤ i .

Solution
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D � Deceptive Directions

Problem

Get w × h grid map and a shortest sequence of NWSE steps to reach some treasure.
But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

1 Compute distance d [p] from start to every position p in the maze using BFS.
2 Forbid all steps that could not have been used by the correct instruction sequence:

Forbid step p → q if not used in any shortest path (i.e., if d [q] 6= d [p] + 1).
Forbid step p → q if going from p to q means taking the same step as the d [q]'th
step in the corrupted instruction sequence.

3 Run BFS again with these steps forbidden.

All reached positions at same distance as instruction length are possible treasure
locations.

4 Time complexity: O(w · h).

Statistics at 4-hour mark: 325 submissions, 55 accepted, �rst after 00:38

Author: Per Austrin NCPC 2021 solutions
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F � Fortune From Folly

Problem

In in�nite random binary sequence x1, x2, x3, . . . where each xi = 1 with probability p
(independently), what is expected �rst value of i such that xi + xi−1+ . . .+ xi−n+1 ≥ k?

Solution

1 At any point, only the n most recent xi 's matter.
2 Let Ez1z2z3...zn be expected #steps until k ones, if most recent xi 's are z1, . . . , zn.

If
∑n

i=1
zi ≥ k then Ez1z2z3...zn = 0.

Otherwise Ez1z2z3...zn = 1+ p · Ez2z3...zn1 + (1− p) · Ez2z3...zn0.

3 This is a system of linear equations in the 2n unknowns Ez1z2z3...zn .

Solve using Gaussian elimination to �nd our answer E00...0.
Time complexity O(23n).

4 Implementation note: represent the bit string z1z2 . . . zn as an n-bit number Z

z2z3 . . . zn0 ←→ (Z >> 1) OR (b << (n− 1))

Statistics at 4-hour mark: 57 submissions, 27 accepted, �rst after 00:31

Author: Bergur Snorrason NCPC 2021 solutions
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C � Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and n − k vertices blue such that
every shortest path from 1 to n has a monochromatic edge.

Solution

1 Dijkstra's algorithm �nds all edges that are part of some shortest path from 1 to n.

2 These edges form a directed acyclic graph. Find a topological ordering.
3 Color the �rst k vertices in the ordering red, and the remaining ones blue:

A shortest path from 1 to n now only switches between red and blue once, so every
shortest path on 3 or more vertices must have a monochromatic edge.

4 Special case: this does not work if there is a direct edge from 1 to n.

Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
We only need to make sure 1 and n get the same color.
Always possible, except if n = 2 and k = 1.

Statistics at 4-hour mark: 67 submissions, 15 accepted, �rst after 01:39

Author: Nils Gustafsson NCPC 2021 solutions
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Problem

Given a vertex-weighted graph, color k vertices red and n − k vertices blue such that
every shortest path from 1 to n has a monochromatic edge.

Solution

1 Dijkstra's algorithm �nds all edges that are part of some shortest path from 1 to n.

2 These edges form a directed acyclic graph. Find a topological ordering.
3 Color the �rst k vertices in the ordering red, and the remaining ones blue:

A shortest path from 1 to n now only switches between red and blue once, so every
shortest path on 3 or more vertices must have a monochromatic edge.

4 Special case: this does not work if there is a direct edge from 1 to n.

Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
We only need to make sure 1 and n get the same color.
Always possible, except if n = 2 and k = 1.
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H � Hiring Help

Problem

Given productivity values `i , fi of n coders and productivity `, f of consultant for t-hour
long project, is there a weighted average of coders such that `avg ≥ `/t and favg ≥ f /t?
Handle many queries like this, interleaved with some of the n coders leaving.

Geometric View

1 The coders are a set of points P in 2D.

2 The consultant query is another point q in 2D.

3 The weighted average exists if and only if q is
below the upper side of the convex hull of P .

4 Coders leaving corresponds to points being
removed, leading to the convex hull changing.

`

f

(`1, f1)

(`2, f2)

(`3, f3)

(`4, f4)
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H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under removals of
points and queries about whether other points (x∗, y∗) are below the hull.
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H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under removals of
points and queries about whether other points (x∗, y∗) are below the hull.

Solution

1 The hull is a piecewise linear function, represent it as a sorted set of points
(x1, y1), (x2, y2), . . . , (xt , yt) where x1 < x2 < . . . xt and y1 > y2 > . . . yt .

2 For a query (x∗, y∗), �nd index i such that xi−1 < x∗ ≤ xi and check if (x∗, y∗) is
below line from (xi−1, yi−1) to (xi , yi ).

3 Handling removals can be done,

but if we instead run the events in reverse order,
the removals become additions, which are easier to handle.
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Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under additions of
points and queries about whether other points (x∗, y∗) are below the hull.

Solution

1 The hull is a piecewise linear function, represent it as a sorted set of points
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H � Hiring Help

Reformulated Problem

Given set of points (x , y), maintain upper side of its convex hull, under additions of
points and queries about whether other points (x∗, y∗) are below the hull.

Handling additions

1 If point to add is outside current hull, add it to our current set of points.

2 Remove any concavities formed to left and right of new point.

3 Issue(?): addition may take a long time because many old points could be
discarded from hull.

4 Not an issue: once a point is discarded, it can never be added back, so total
number of removals for all events is ≤ n.

5 O((n + e) log n) total time complexity.

Statistics at 4-hour mark: 24 submissions, 7 accepted, �rst after 01:42
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I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?
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I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

1 Let Ai = a1, . . . , ai be the pre�x of �rst i values of a.

2 Let s be the number of indices 1 ≤ i < n such that Ai is a permutation of Bi .
3 Then the number of ways is 2s − 1:

breaking up a at any non-empty subset of these indices results in a valid separation
breaking at any other index results in an invalid separation

4 To �nd s quickly, can use a permutation-invariant hash function.

Assign a random hash value h(x) to each array value x .

De�ne hash h(Ai ) of a pre�x to be
∑i

j=1
h(aj).

If no hash collisions then Ai is a permutation of Bi if and only if h(Ai ) = h(Bi ).
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I � Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals
such that array b can be obtained by permuting each interval separately?

Solution for the circular case

1 For each hash value z , let s(z) be number of indices 0 ≤ i < n such that
h(Ai )− h(Bi ) = z .

2 Then (assuming no hash collisions), the number of ways is
∑

z 2
s(z) − s(z)− 1.

For each z , taking any subset of at least 2 of the s(z) indices is a valid separation.
Taking two indices with di�erent values of h(Ai )− h(Bi ) gives an invalid separation.

3 Results in an O(n) time solution, assuming O(1)-time dictionaries which can be
used to store the frequency of each hash value.

Statistics at 4-hour mark: 11 submissions, 5 accepted, �rst after 01:51
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B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.
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B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

1 Compute the number of bars of each bar size (there are 21 sizes).

2 Always greedily pair up bars so that you never have 2 or more of any size.

3 Find minimum number of breaks needed for remaining bars.

4 Can be computed e�ciently by dynamic programming over 221 states.

5 Does not always give the optimum number of breaks. Example:

3x2 3x3 1x5 2x5 3x5 3x5

Split one 3x5 as 3x2+3x3 and the other as 1x5+2x5 to get away with two splits.

6 But this does give upper bound on number of breaks that may be needed (it is 9).
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B � Breaking Bars

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two
equal collections of bars, each collection having at least t squares.

Actual Solution

1 Recursively search for the best way to break the bars, going from larger bars to
smaller ones.

2 Keep track of number of breaks made and how many squares can be partitioned
among the larger bars already considered.

3 Avoid recursive calls that will produce more breaks than best solution found.

4 Since there is no need for more than 9 breaks and any bar be broken in at most 5
di�erent ways, this turns out to be fast enough.

Statistics at 4-hour mark: 17 submissions, 1 accepted, �rst after 01:13
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E � Eavesdropper Evasion

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of
them are fully sent within any time frame of length x .
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Solution

1 Messages longer than x can be ignored as they can never be intercepted

Mostly - �nal result can not be smaller than the longest message!

2 Solve the case if at most 1 message was allowed to be intercepted

3 Generalize it to at most 2 intercepted messages
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E � Eavesdropper Evasion

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of
them are fully sent within any time frame of length x .

Solution if at most 1 message is allowed to be intercepted

1 If a message (regardless of length) starts at time a, the next message can start no
earlier than time a+ x + 1− t, where t is the length of the next message.

2 Repeating this, the total time to send all n messages becomes

x + 1+
n−1∑
i=2

(x + 1− ti ),

where ti is the length of the ith message sent.

3 Note: length of the �rst and last message does not a�ect the total send time!

4 By placing the two shortest messages �rst and last, we get the optimal solution.
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E � Eavesdropper Evasion

Solution for the 2-message case

1 Key observation: we can view this as having 2 separate channels, and we want at
most 1 intercepted message in each channel (not immediately obvious!).

2 Only thing to decide is which messages to send on which channel.

Channel with r msgs of lengths t1, . . . , tr �nishes in time x + 1+
∑r−1

i=2
(x + 1− ti ).

Take the 4 shortest messages and put �rst and last in each channel.
Each remaining message of length t gets a weight w = x + 1− t.

3 We have m = n − 4 weights w1, . . . ,wm of total weight W = w1 + . . .+ wn.

4 Want to �nd a subset S ⊆ [m] such that
∑

i∈S wi is as close to W /2 as possible.
5 This is a Subset Sum/Knapsack problem.

Classic dynprog algorithm solves it in time O(nW ) = O(n2x). Too slow.
Can be solved in O(n · x) time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted

Author: Jimmy Mårdell NCPC 2021 solutions
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M � Marvelous Marathon

Problem

Find a path of length x subject to certain constraints in a 2×m grid so that the sum of
the values in the cells of the path is maximized.

Formalized version of problem

Find integers 0 ≤ a ≤ b ≤ c ≤ d ≤ m such that 2(b − a) + (c − b) + 2(d − c) = x .

Maximize


sum of cells of one row in range [a, d)

plus
sum of cells of other row in ranges [a, b) and [c , d)


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M � Marvelous Marathon

Solution outline

1 m is very large, cannot loop over all cells

2 Large parts of grid look the same because only n segments

3 Separately handle three main cases: 0, 1 or 2 U-turns

4 We focus here only on the hardest case with 2 U-turns.
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4 We focus here only on the hardest case with 2 U-turns.
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M � Marvelous Marathon

Insight 1

1 We can assume solution has the gap in the lower half

Run solution again on �ipped input to cover opposite case

2 There is an optimal solution where a or d is at a segment endpoint (or 0 or m).
Otherwise we could decrease (or increase) both a and d with 1 until either

a or d reaches a segment endpoint, or
d = c or a = b, in which case we end up with the 1 U-turn case
(handled separately, left as an exercise!)

3 We can assume a is the endpoint

Run solution again on reversed input to cover opposite case.
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M � Marvelous Marathon

Insight 2

1 There is an optimal solution where b or c is at a segment endpoint, for the same
reasoning as before (except that this time we would show it by shifting b or c).

2 We end up with two cases to consider:

a and b are segment endpoints
a and c are segment endpoints

3 Will focus on the �rst of these; the other must also be solved, but is done in a very
similar fashion.
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M � Marvelous Marathon

Sliding

1 Fix some a and b. (O(n2) possible choices.)

2 Set c = b (or c = b + 1 if x is odd) and d = a+ dx/2e
3 Idea: slide c and d right (c twice as fast as d) and maintain current score.

Since grid values rarely change value, we can slide many steps at a time.
Calculate when either c or d hits next segment endpoint and jump directly there.
Repeat until c reached the end of the road.

4 �Next segment endpoint� can be found in O(1), for a total complexity of O(n3).

An optimized O(n4) implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted
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Results!
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